
Postprint

Unraveling Unstructured Process Models

Marlon Dumas1, Luciano Garćıa-Bañuelos1, and Artem Polyvyanyy2

1 Institute of Computer Science, University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

2 Hasso Plattner Institute at the University of Potsdam, Germany
{Artem.Polyvyanyy@}@hpi.uni-potsdam.de

Abstract. A BPMN model is well-structured if splits and joins are al-
ways paired into single-entry-single-exit blocks. Well-structuredness is
often a desirable property as it promotes readability and makes models
easier to analyze. However, many process models found in practice are
not well-structured, and it is not always feasible or even desirable to
restrict process modelers to produce only well-structured models. Also,
not all processes can be captured as well-structured process models. An
alternative to forcing modelers to produce well-structured models, is to
automatically transform unstructured models into well-structured ones
when needed and possible. This talk reviews existing results on automatic
transformation of unstructured process models into structured ones.

1 Introduction

Although BPMN process models may have almost any topology, it is often prefer-
able that they adhere to some structural rules. In this respect, a well-known
property of process models is that of well-structuredness, meaning that for every
node with multiple outgoing arcs (a split) there is a corresponding node with
multiple incoming arcs (a join), such that the set of nodes between the split and
the join form a single-entry-single-exit (SESE) region. For example, the process
model shown in Fig.1(a) is unstructured because the parallel split gateways do
not satisfy the above condition. Fig.1(b) shows an equivalent structured model.

The automatic transformation of unstructured process models into structured
ones has been the subject of many R&D efforts. This keynote paper summarizes
some of the results of these efforts, including the initial results on an ongoing
research effort aiming at developing a complete method for structuring (BPMN)
process models. But before discussing how to structure BPMN process models,
let us briefly discuss why should we care about doing so.

2 Structured BPMN Models: Why?

There are multiple reasons for wanting to transform unstructured BPMN mod-
els into structured ones. Firstly, it has been empirically shown that structured
process models are easier to comprehend and less error-prone than unstructured



2 Marlon Dumas, Luciano Garćıa-Bañuelos, and Artem Polyvyanyy

a2
UBL

EDI 856 (ASN)

EDI 810 (Invoice)

handle 
despatch-advice

handle invoice

EDI
send 

payment request

send
fulfillment-notice

a1

a4

a3
a5

a6

update accounts 
database

a7

R1

B1

P1

(a)

a2
UBL

EDI 856 (ASN)

EDI 810 (Invoice)

handle 
despatch-advice

handle invoice

EDI

send 
payment request

send
fulfillment-notice

a1

a4

a3

a5

a6

update accounts 
database

a7

send 
payment request

a5

P1
P2

P3

B1
B2

B3

B4

(b)

Fig. 1. Unstructured process model and its equivalent structured version

ones [1]. Thus, a transformation from unstructured to structured process model
can be used as a refactoring technique to increase understandability. In particu-
lar, models generated by process mining techniques are often large, spaghetti-like
and difficult to understand and would benefit from being re-structured. Also,
mined process models come without layout information, thus requiring auto-
mated layout techniques to be applied. Automatic layout of structured process
models is easier compared to layout of arbitrarily unstructured models.

Secondly, several existing process model analysis techniques only work for
structured models. For example, an efficient method for calculating cycle time
and capacity requirements for process models is outlined by Laguna & Mark-
lund [2], but this method is only applicable to well-structured models. Other
methods for computing the Quality of Service (QoS) of process models and ser-
vice orchestrations assume that models are structured [3, 4], and the same applies
to methods for analyzing time constraints in process models [5]. By transforming
unstructured process models to structured ones, we can extend the applicability
of these analysis techniques to cover a larger class of models.

Finally, a transformation from unstructured to structured process models can
be used to implement converters from graph-oriented process modeling languages
like BPMN to structured process modeling languages such as BPEL [6].

3 A Short History of Structured Process Models

In many ways, flowcharts can be seen as predecessors of business process mod-
eling notations such as BPMN. Thus, before discussing how to structure BPMN



Unraveling Unstructured Process Models 3

models, it is useful to summarize some key results of a large body of research
that has tackled the problem of structuring flowcharts. This research, dating
mostly from the 70s and 80s, was initially motivated by the debate between
proponents of structured programming (based on “while” loops) and those who
wanted to stick to programs with GOTO statements. Proponents of structured
programming showed that any unstructured flowchart (representing a program
with GOTO statements) can be transformed into a structured one. In fact,
the title of the present paper is inspired by that of a seminal paper by Oul-
snam [7], which presented a classification of unstructured flowchart components
and showed how each type of component can be transformed into an equivalent
structured one. Oulsnam and others noted that, when structuring loops with
multiple exit points as well as overlapping loops, one needs to introduce boolean
variables in order to encode parts of the control flow. In any case, we can retain
from this work that every unstructured BPMN model composed of tasks, events,
exclusive gateways and flows can be transformed into a structured BPMN model.

Another heritage from the research on program structuring is the Program
Structure Tree (PST). The PST of a program is a tree in which the nodes rep-
resent SESE regions in the program’s flowchart. The root of the PST represents
the entire program. As we go down the PST, we find smaller SESE regions, until
we reach individual steps. The SESE region associated to a node contains the
SESE regions associated to each of its child nodes, and the SESE regions of these
child nodes are disjoint. The concept of PST can be applied to BPMN models
because it is unimportant whether the nodes represent tasks, events, exclusive
or parallel gateways, or other BPMN nodes. Fig.1(a) shows the SESE regions
composing the PST of the BPMN model. The largest region (P1) contains the
entire BPMN model. Nested inside it we find two other regions (R1 and B1).

Recent research on structuring business process models has motivated further
developments around the concept of PST. Motivated by the problem of trans-
forming unstructured BPMN models into structured ones, Vanhatalo et al. [8]
have proposed an improved version of the PST called the RPST (Refined PST).
The RPST addresses some technical issues in the PST that we do not discuss
because they are irrelevant to this paper. In fact, the RPST of Fig.1(a) and
1(b) are exactly the same as the corresponding PSTs. The difference between
RPST and PST is only visible in more specific examples, particularly when some
gateways are used both as split and joins.

The RPST also introduces a classification of SESE regions (also called com-
ponents) into four classes: A trivial (T ) component consists of a single flow arc.
A polygon (P ) represents a sequence of components. A bond (B) stands for a set
of components that share two common nodes (basically: a split gateway and a
join gateway). Finally, any other component that does not fall in these categories
is a rigid (R) component. In Figures 1(a) and 1(b), the labels of the components
reflect their types (e.g. R1 is a rigid, P1 is a polygon). For the purposes of this
paper, trivial components are unimportant, and therefore we ignore them.

A process model is structured if its RPST does not contain any rigid compo-
nent. For example, Fig.1(b) only contains B and P components. The problem of



4 Marlon Dumas, Luciano Garćıa-Bañuelos, and Artem Polyvyanyy

structuring BPMN model boils to transforming R components into combinations
of P and B components.

Process component

Trivial Polygon Bond Rigid

Homogeneous Heterogeneous

XOR AND

Acyclic Cyclic

Acyclic Cyclic

Fig. 2. Taxonomy

The methods for structuring rigids differ de-
pending on the types of gateways in the rigid
and whether the rigid contains cycles or not. Ac-
cordingly, we classify rigids as follows (cf. Fig.2).
A homogeneous rigid contains either only exclu-
sive (xor) or only parallel (and) gateways. We
call these rigids (homogeneous) and rigids and
(homogeneous) xor rigids, respectively. A het-
erogeneous rigid contains a mixture of and/xor
gateways. Heterogeneous and homogeneous xor
rigids are further classified into cyclic or acyclic.
We leave cyclic homogeneous and rigids out of
the discussion, because it can be shown that BPMN models containing such
rigids are not sound according to the usual definition of soundness [9]. Sound-
ness is a widely-accepted correctness criterion for process models.

A

B

C

D

Fig. 3. Inherently un-
structured BPMN model

One of the earliest studies on the problem of struc-
turing BPMN-like models is that of Kiepuszewski et
al. [10]. The authors showed that not all acyclic and
rigids can be structured by putting forward a counter-
example, which essentially boils down to the one in
Fig.3. The authors showed that there is no structured
(BPMN) model that is equivalent to this one under an
equivalence notion known as Fully-Concurrent Bisim-
ulation (FCB). This equivalence notion is arguably the one we seek in the con-
text of transforming unstructured process models into a structured one. We
could transform the model in Fig.3 into a trace-equivalent or weakly-bisimilar
structured model that only contains exclusive gateways or event-driven decision
gateways by enumerating all possible sequential executions of the tasks in the
model, but this leads to spaghetti models. If there is parallelism in the original
model, we also want the restructured model to have parallelism to the same
extent. This is precisely what FCB-equivalence captures.

A

B

C

D

Fig. 4. Overlapped structure

Liu & Kumar [11] continued this work by out-
lining a taxonomy of unstructured process model
components. Their taxonomy puts in evidence
several types of cyclic and acyclic rigids, distin-
guishing those that are sound and those that are
not. The taxonomy includes a class of heteroge-
nous acyclic rigids called overlapping structures, of
which Fig.1(a) is an exemplar. Another example of an overlapped structure is
shown in Fig.4. The authors note that such “overlapping structures” are sound
and that they have an equivalent structured model, but without defining an au-
tomated method for structuring these and other unstructured rigids. Also, the
taxonomy is not complete: some unstructured components do not fall into any of



Unraveling Unstructured Process Models 5

the categories. Later, Hauser et al. [12] outlined another classification of process
components using region trees – a structure similar to the RPST. The authors
showed a method for detecting and refactoring the “overlapped structures” iden-
tified by Liu & Kumar. Hauser et al. also observe that all homogeneous rigids
are sound. Unsoundness comes from heterogeneous rigids.

We retain from the above that:

– Thanks to the RPST, we can structure a process model if we can structure
every rigid component in the process model.

– Any homogeneous xor rigid can be structured (cf. GOTO-to-While problem).
– Some homogeneous and rigids cannot be transformed into equivalent struc-

tured components under FCB-equivalence.
– Heterogeneous rigids are unsound in some cases. When they are sound, it may

or may not be possible to transform them into structured components.

4 Towards a Complete Structuring Method

In recent work [13], we presented a method for structuring acyclic BPMN process
models. This method is implemented in a tool called BPStruct.

To intuitively explain how BPStruct works, we observe that when transform-
ing an unstructured model into a structured one, we need to duplicate some tasks.
For example, in Fig.1(b), task send payment request appears twice, whereas it
only appears once in Fig.1(a). If we dig deeper, we observe that this duplication
occurs when the unstructured model contains an xor-join that is not paired with
a unique xor-split. This is the case for example in Figure 1(a), which features
two xor-joins that are not paired with an xor-split. In this case, we need to
duplicate the tasks that come after such an xor-join, and at the same time, push
the xor-join downstream in the process model, until we get to a point where
the xor-join is paired with an xor-split. In the general case, this “duplicate-and-
push” procedure is complicated. But fortunately, this problem has been tackled
in the context of Petri nets. Petri net researchers have developed techniques to
“unfold” a net so that xor-joins are pushed as far as possible downstream. If we
push the unfolding to the extreme, we obtain something called an occurrence net,
which is basically a net without xor-joins.1 While unfoldings solve the problem
of duplicating tasks and getting rid of unstructuredness caused by improperly
paired xor-splits, they can become quite large if we don’t stop unfolding at the
right point. Esparza et al. [14] have devised a technique that computes an un-
folding that is rather small compared to other possible unfoldings. This is called
the complete prefix unfolding, and it is the intermediate structure that BPStruct
uses for structuring both acyclic and cyclic rigids.

In addition to duplicating tasks when required, an unfolding puts into evi-
dence the fundamental ordering relations between pairs of activities. Specifically,
the unfolding allows us to easily determine which pairs of tasks are in a causal

1 For those familiar with Petri nets, an xor-join translates into a place with two input
arcs. A net in which every place has only one input arc is called an occurrence net.



6 Marlon Dumas, Luciano Garćıa-Bañuelos, and Artem Polyvyanyy

relation (meaning that the execution of one task causes the execution of an-
other task), which pairs tasks are in a conflict relation (meaning that if one
task is executed the other one will not) and which pairs of tasks are in a con-
currency relation, meaning that they are both performed, but in any order. In
other words, from the unfolding we can directly compute a graph of ordering
relations between activities. Each edge in this graph is labelled by one of three
types of relations: causality, conflict and concurrency. For example, the ordering
relations extracted from the unfolding of the BPMN model in Fig.4 are shown
in Fig.5(a). The filled one-way arrow denotes causality, the filled two-way arrow
denotes conflict, and the dotted two-way arrow denotes concurrency.

a

b

c

d

(a)

a

b

c

d

L1
C1 C2

(b)

A

B

C

D

(c)

a

b

c

d

(d)

Fig. 5. (a) Ordering relations of Fig.4, (b) modular decomposition, (c) resulting struc-
tured component, (d) ordering relations of Fig.3

The ordering relations capture all the control-flow information in the original
model in a compact way. At this stage, all the necessary duplication of tasks
has been done, and the model has been cleaned from spurious gateways that
sometimes appear in unstructured models. In principle, we should be able to
reconstruct a BPMN model by converting these ordering relations into flows and
gateways. But how do we ensure that the resulting model is structured? Here
is where another theory comes in very handy: that of modular decomposition
of graphs. The modular decomposition theory enables us to find blocks in an
arbitrary graph. BPStruct applies a modular decomposition algorithm on the
graph of ordering relations in order to separate it into blocks. For example, the
modular decomposition of Fig.5(a) is shown in Fig.5(b). Here we can clearly see
that tasks a and b belong to a conditional block, because they are in conflict.
Meanwhile, tasks c and d belong to a parallel block because they are in parallel.
These two blocks are in a causality relation. This modular decomposition can
then be used to synthesize the structured BPMN model shown in Fig.5(c).

We have shown in [13] that an acyclic rigid can be structured if its modular
decomposition is composed of linear and complete modules as in the Fig.5(b).
These modules basically correspond to P and B components in the RPST. If the
ordering relations graph contains a third type of module known as a primitive,
then the original process model is inherently unstructured. For example, Fig.5(d)
shows the ordering relations graph of Fig.3. The modular decomposition of this
graph contains only one primitive module. Hence, it cannot be structured.

The method outlined above only works for acyclic rigids because the graph
of ordering relation is not a convenient abstraction for models with cycles. In the
presence of cycles, we may have causal relations from task A to B and vice-versa,
leading to a chicken-or-egg issue. Still, Petri net unfoldings can also be used to



Unraveling Unstructured Process Models 7

structure cyclic rigids. The idea is to extract acyclic parts from the unfolding,
abstract them as black-boxes (that can be structured using the above method),
and then construct a cyclic rigid that only contains xor gateways. This latter
rigid can be structured using GOTO-to-While transformations. A preliminary
solution for structuring cyclic rigids is implemented in BPStruct. However, as of
the time of writing this paper, the underlying theory is still being worked out.

Also, BPStruct currently does not deal with inclusive and complex gateways,
error events, exception flows, attached events and non-interrupting events. As
the tool matures, we hope to lift as many of these restrictions as possible.

Acknowledgments. This work is supported by ERDF via the Estonian Centre
of Excellence in Computer Science and the EU FP7 Project 257593 – ACSI.

References

1. Laue, R., Mendling, J.: The Impact of Structuredness on Error Probability of
Process Models. In: UNISCON. Volume 5 of LNBIP. (2008) 585–590

2. Laguna, M., Marklund, J.: Business Process Modeling, Simulation, and Design.
Prentice Hall (2005)

3. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web 1(3) (2004) 281–308

4. Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5) (2004) 311–327

5. Combi, C., Posenato, R.: Controllability in Temporal Conceptual Workflow
Schemata. In: BPM. Volume 5701 of LNCS. (2009) 64–79

6. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling,
J.: From business process models to process-oriented software systems. ACM
Trans. Softw. Eng. Methodol. 19(1) (2009)

7. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3) (1982) 379–
387

8. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
& Knowledge Engineering 68(9) (2009) 793–818

9. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
Control Flow in Workflows. Acta Inf. 39(3) (2003) 143–209

10. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow
Modelling. In: CAiSE. Volume 1789 of LNCS. (2000) 431–445

11. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:
BPM. Volume 3649 of LNCS. (2005) 268–284

12. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An Incremental Approach to
the Analysis and Transformation of Workflows Using Region Trees. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C 38(3) (2008) 347–359

13. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. In: Proc. 8th International Conference on Business Process Management,
Hoboken, NJ, USA (September 2010)

14. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. FMSD 20(3) (2002) 285–310


